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SUMMARY

The application of nonlinear schemes like dual time stepping as preconditioners in matrix-free Newton–
Krylov-solvers is considered and analyzed, with a special emphasis on unsteady viscous flows. We provide a
novel formulation of the left preconditioned operator that says it is in fact linear in the matrix-free sense,
but changes the Newton scheme. This allows to get some insight in the convergence properties of these
schemes, which is demonstrated through numerical results. Copyright q 2009 John Wiley & Sons, Ltd.
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1. INTRODUCTION

As was shown in [1], the solution of steady Euler flows is today possible in three to five multigrid
steps. Thus, two-dimensional flows around airfoils can be solved on a PC in a matter of seconds.
The solution of the steady Reynolds-averaged Navier–Stokes equations is more difficult and takes
about fifty steps. Nevertheless this means that adequate methods for steady flows exist and the
next big challenge for computational fluid dynamics is the computation of unsteady problems.
Now, for a lot of applications, the interesting flow phenomena are not on the scale of the fast
acoustic eigenvalues, but on the scale of the convective eigenvalues. This makes implicit schemes
for time integration much more interesting than explicit schemes, which are severely restrained
in the time step size by the Courant–Friedrichs–Lewy condition. Usually, A-stable methods are
employed, where the second-order backward differentiation formula BDF-2 has a lot of popularity.
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For implicit schemes, their applicability is determined by the availability of fast solvers for the
arising large nonlinear equation systems.

Using dual time stepping, the above mentioned multigrid method can be used for unsteady
flows. This results in a good method for Euler flows, but for the Navier–Stokes equations, dual time
stepping was observed to be very slow for some cases, in particular, for turbulent flows on high
aspect ratio grids. The alternative to this is to use Newton’s method, which requires the solution
of large sparse linear equation systems, usually by preconditioned Krylov subspace methods like
generalized minimal residual (GMRES) or bi-conjugate gradient stabilized (BiCGSTAB). Owing
to the excessive memory requirements for Navier–Stokes flows in three dimensions, matrix-free
methods that circumvent computation and storage of the jacobian are an attractive alternative,
see the overview paper by Knoll and Keyes [2]. Newton’s method suffers from the problem that
convergence is guaranteed only in a neighborhood of the solution and that the linear equation
systems become more difficult to solve, the larger the chosen time step is. Overall, it must be said
that currently, no fast solver for unsteady viscous flow exists.

To improve upon the existing methods, a few approaches have been tried. Hsu and Jameson
suggest in [3] to use one step of the alternate direction implicit method, followed by few multigrid
steps for the dual time problem, which is similar to using one Newton step, followed by dual time
stepping. Bijl and Carpenter on the other hand use k1 dual time stepping up front, followed by
k2 steps of Newton’s methods, see [4]. Both report an improvement in comparison with the base
pure dual time stepping scheme.

In this paper, we will explore the techniques of blending dual time stepping with Newton’s
method further. In particular, the idea of using dual time stepping as a nonlinear preconditioner
for the linear solver will be examined. This was first tried by Wigton et al. in 1985 [5], lately by
Mavriplis [6] and Bijl and Carpenter [4]. Here, we provide a novel formulation for the nonlinearly
left preconditioned operator in the matrix-free case, that gives new insight into those methods.

2. THE GOVERNING EQUATIONS

The Navier–Stokes equations are a second-order system of conservation laws (mass, momentum,
energy) modeling viscous compressible flow. We consider the two-dimensional case, written in
conservative variables density �, momentum m=�v and energy per unit volume �E :

�t�+∇ ·m=0

�tmi +
2∑
j=1

�x j (miv j + p�i j )= 1

Re

2∑
j=1

�x j Si j , i=1,2

�t (�E)+∇ ·(Hm)= 1

Re

2∑
j=1

�x j

(
2∑

i=1
Si jvi − 1

Pr
Wj

)

Here, S represents the viscous shear stress tensor and W the heat flux. As the equations are
dimensionless, the Reynolds number Re and the Prandtl number Pr appear. The equations are
closed by the equation of state for the pressure p=(�−1)�e.

Copyright q 2009 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2010; 62:565–573
DOI: 10.1002/fld



NONLINEAR PRECONDITIONERS FOR UNSTEADY FLOWS 567

3. NUMERICAL METHOD

The standard methods to solve this type of equations are finite-volume methods. We consider some
general finite-volume space discretization, which is represented by the grid function R(w), which
acts on the vector of all conserved variables w:

(Vw)t +R(w)=0

where the diagonal matrix V represents the volume of the cells of the grid. As time integrator we
use BDF-2 which results for a nonmoving grid and a fixed time step �t in the equation

V

�t

(
3

2
wn+1− 4

2
wn+ 1

2
wn−1

)
+R(wn+1)=0

Multiplying by two, we define the function F(w) to obtain the nonlinear equation system for
the unknown w=wn+1

F(w)= V

�t
(3w−4wn+wn−1)+2R(w)=0 (1)

This system can be solved using a variety of methods, in particular, Newton’s method and dual
time stepping, which will be explained in the next sections. Generally, we will denote a method
for the solution of the above equation by the operator N (w), N for nonlinear.

3.1. Newton–Krylov method

The numerical solution of the nonlinear equation system (1) can be done using Newton’s method.
One Newton step is given by:(

3

�t
V +2

�R(w)

�w

)∣∣∣∣
w(k)

�w=−F(w(k))

w(k+1) =w(k)+�w

We solve this linear equation system Ax=b with system matrix

A=
(
3V

�t
+2

�R(w)

�w

)∣∣∣∣
w(k)

using matrix-free Krylov subspace methods. These approximate the solution to the linear system
in the Krylov subspace

x0+span{r0, Ar0, A2r0, . . . , A
m−1r0}

where x0 is an initial guess and r0=b−Ax0 the initial residual.
As Krylov subspace methods never need the matrix A explicitly, but only matrix–vector products,

we circumvent the expensive computation of the Jacobian to obtain a matrix-free method. This
is done by approximating all matrix–vector products between A and some vector q by finite
difference approximations of directional derivatives:

Aq≈ F(w(k)+�q)−F(w(k))

�
= 3V

�t
q+2

R(w(k)+�q)−R(w(k))

�
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Following [7], we use �=√
�m/‖q‖2, where �m is the machine precision. As reported by several

authors, GMRES-like methods that have an optimality property are more suitable for this approach
than methods like BiCGSTAB with short recurrences. The GMRES algorithm is iterated until the
relative linear residual has dropped by some factor, whereby it is common to restart after a fixed
number of iterations, to bound the memory needed. Newton is iterated until a maximal number of
steps has been performed or the norm of F(w(k)) is below some threshold.

3.2. Dual time stepping

The dual time stepping scheme solves the equation system (1) by adding a pseudo-time derivative
with respect to a pseudo-time t∗ and computing the steady state of the following equation system:

�w

�t∗
+F(w)=0

This is done using the nonlinear multigrid method for the computation of steady flows of
Jameson [8]. Here, two special Runge–Kutta schemes for the convective and the dissipative fluxes,
which have large stability regions, are used as a smoother. The prolongation Q is done using
bilinear interpolation and the restriction by using volume-weighted averages of the entries of w.
Convergence is accelerated by local time stepping and residual averaging. Then, a W-cycle with
four or five grid levels is performed.

This results in a very fast method for Euler flows, which needs only three to five multigrid
steps per time step [1]. For Navier–Stokes flows, this is significantly slower, in particular, for high
aspect ratio grids and turbulent flows, where sometimes more than a hundred steps are needed for
convergence.

3.3. Preconditioning

The convergence speed of Krylov subspace methods can and has to be significantly improved
using preconditioners. A preconditioner P−1 is usually a linear operator that is an approximation
of A−1. First, we have left preconditioning:

P−1Ax= P−1b

and the Krylov subspace is changed to

x0+span{P−1r0, P
−1AP−1r0, (P

−1A)2P−1r0, . . . , (P
−1A)m−1P−1r0}

On the other hand, right preconditioning corresponds to

AP−1y, x= P−1y

so that the Krylov subspace is unchanged. In the matrix-free case, right preconditioning means
that every time the matrix A is applied to a vector q , we have to apply

AP−1q≈ F(w(k)+�P−1q)−F(w(k))

�
= 3V

�t
P−1q+2

R(w(k)+�P−1q)−R(w(k))

�
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Here, we will use nonlinear schemes like dual time stepping as preconditioners. This was first
tried by Wigton et al. in 1985 [5], lately by Mavriplis [6] and Bijl and Carpenter [4]. Following
those, we define the nonlinear preconditioner for the matrix-free method via

P−1F(w)=w−N (w) (2)

where F is the function from Equation (1).

4. ANALYSIS OF THE PRECONDITIONED SCHEME

Let us first consider left preconditioning. Since N is nonlinear, we expect P−1 to be changing
with every step; hence, the space in which the Krylov subspace method works would be

x0+span{P−1
0 r0, P

−1
1 AP0r0, P

−1
2 AP−1

1 AP−1
0 r0, . . .}

This is in general not a Krylov subspace. However, for the matrix-free method we have

P−1Aq= P−1F(w(k)+�q)−P−1F(w(k))

�

The first term in the nominator can be expressed as

P−1F(w(k)+�q)=−N (w(k)+�q)+w(k)+�q

and we obtain

P−1Aq= −N (w(k)+�q)+w(k)+�q+N (w(k))−w(k)

�

Now, in the matrix-free sense, this is nothing but

P−1Aq=
(
I − �N

�w

)∣∣∣∣
w(k)

q (3)

Thus, this is not a nonlinear preconditioner, but a linear operator and may be applied to any
Krylov subspace method without changes. We also obtain a representation of the preconditioner:

P−1=
(
I − �N

�w

)∣∣∣∣
w(k)

A−1 (4)

We will now have a look at the right-hand side. It turns out, that the left preconditioned right-
hand side is off. In the current method, the definition of the preconditioner (2) is applied to the
original right-hand side −F(w(k)) when computing the preconditioned right-hand side:

−P−1F(w(k))=N (w(k))−w(k)

But, as we just saw, the correct thing would be to apply (4). Using −A−1F(xk)=�wk , we
obtain instead

−
(
I − �N

�w

)
A−1F(w(k)) =

(
I − �N

�w

)
�w(k)

= w(k+1)−w(k)− �N
�w

�w(k) �=N (w(k))−w(k) (5)
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and thus the left preconditioned right-hand side is changed in a nonequivalent way. Note that this
cannot be fixed easily since w(k+1) is an unknown. One approach would be to approximate that,
but the most reasonable approximation is w(k) and then we would end up with a zero right-hand
side and no update for Newton.

We will now use the novel formulation (3) to look more closely at the properties of the new
method. In particular, it becomes clear that I −(�N/�w)|w(k) is not necessarily better than A for
convergence. For the special case of the dual time stepping method, the preconditioner is equal to
the original value plus an update from the multigrid method: N (w)=w+MG(w). We thus obtain

P−1A= I − �N
�w

= �MG

�w

If the dual time stepping stalls, for example, because we are close to a steady state, this is close
to zero and may be ill conditioned and thus hinder convergence.

A more favorable approach is right preconditioning:

AP−1y=b, x= P−1y

This uses the same Krylov subspace, but after the iteration is finished, the solution has to be
transformed back. A direct application of the above described methodology leads to two problems:

1. GMRES uses basisvectors of the solution space of the linear system. But we do not know
how to apply multigrid to something like �w.

2. Since P−1 might be variable, we do not really know what the proper backtransformation
would be.

Problem 2 is solved by the flexible GMRES method [9], but not problem 1. Both problems are
solved by GMRES-* [10], which works with residualvectors. * represents the right preconditioner.
For ∗= I , we obtain the generalized conjugate residual (GCR) method, which is algebraically
equivalent to GMRES.

Nonlinear right preconditioning is applied via:

P−1rm ≈ P−1F(w(k)+xm)=w(k)+xm−N (w(k)+xm)

This is a truly nonlinear method.

5. NUMERICAL EXPERIMENTS

Our basic multigrid solver is UFLO103 developed by Jameson et al. As numerical flux function,
we employ the central scheme of Jameson, Schmidt and Turkel scheme.

5.1. Effect on linear solver

At first we consider the effect of the nonlinear preconditioner on the linear iterative scheme. We
will make a distinction between steady and unsteady flows and now consider the latter.

The first test case is the computation of viscous flow around the NACA0012 airfoil at Mach
0.796 and zero angle of attack on a 256×64 mesh. In an initial phase, we perform 20 steps of the
steady state solver. Then, we switch to the instationary solver, so that we are still in a phase of
the computation where instationary effects are present.
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Figure 1. Linear residual vs iterations for one system for unsteady viscous
flow: NACA0012 (left) and cylinder (right).
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Figure 2. Linear residual vs iterations for one system for stationary Euler flow.

The second test case is the computation of viscous flow around a cylinder at a Reynolds number
of 100.000 and a freestream Mach number of 0.25, before the onset of turbulence. A 512×64
mesh was used.

Shown is the convergence history of different solvers for the first linear system to be solved.
We iterate until the norm of the residual has dropped by three orders of magnitude. In Figure 1 we
can see that the nonlinear preconditioner improves the convergence speed significantly, whereas
the unpreconditioned solver stagnates.

To test the performance of the preconditioner for steady flows, we consider the Euler flow on
a 192×32 mesh, where we have computed the steady state already and the steady state multigrid
solver has slowed down (NACA0012, Mach 0.796). Again we show the convergence history for the
first linear system to be solved. It can be seen in Figure 2 that now, the preconditioned scheme is
not an improvement over the unpreconditioned scheme. Apparently, N (w) is close to the identity.
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Figure 3. Convergence of Newton scheme for Euler flow (left) and
for viscous flow around cylinder (right).

It can also be seen that after some iterations, GCR and GMRES, although being mathematically
equivalent, start to deviate due to rounding errors. For all test cases, the convergence speed for the
unpreconditioned scheme is, as expected, similarly slow.

5.2. Effect on nonlinear solver

We now consider the effect of left preconditioning on the Newton convergence. As we saw from
the analysis, the nonlinear left preconditioner changes the right-hand side of the linear system, so
that the preconditioned system is no longer equivalent to the original one. While we saw in the first
example that left preconditioning is beneficial for convergence of the linear solver in the relevant
case of unsteady flowfields, the question arises whether this affects the Newton convergence. To
test this, we consider one time step and look at the nonlinear residual to get an indication of the
convergence of the Newton scheme (Figure 3).

The left picture shows one time step for the steady Euler flow around the NACA0012 profile
from the last example, whereas the second picture shows one time step for viscous flow around a
cylinder at Reynolds 100.000 and freestream Mach number 0.25, before the onset of turbulence.
A 512×64 mesh was used for the second case.

As we can see, if left preconditioning is used, the residual curve stalls. This is only an indicator
for the convergence of the Newton scheme, but cannot be considered good. However, it should be
mentioned that for the cases we tested, the left preconditioned scheme did provide correct results.
In the unpreconditioned case, Newton’s method converges slowly for the steady Euler flow, which
is explained through the large time steps for the steady test case and fast for the unsteady viscous
test case, which is due to the much smaller time steps for the unsteady test case.

6. CONCLUSIONS

We found a novel formulation of the nonlinear preconditioned operator that allows to investigate
the properties of such schemes better. In particular, it turns out that the left preconditioned scheme
can be seen as a linear preconditioner in the matrix-free sense, that changes the right-hand side of
the Newton scheme in a nonequivalent way. The analysis predicts that the preconditioner is a bad
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choice for steady flows and that the Newton convergence will slow down for left preconditioning.
This is confirmed by numerical experiments.

ACKNOWLEDGEMENTS

We would like to thank Dr Nawee Butsuntorn for his support in debugging the code and his helpful
comments.

REFERENCES

1. Caughey DA, Jameson A. How many steps are required to solve the euler equations of steady compressible flow:
in search of a fast solution algorithm. AIAA-Paper 2001-2673, 2001.

2. Knoll D, Keyes, D, Jacobian-free Newton–Krylov methods: a survey of approaches and applications. Journal of
Computational Physics 2004; 193:357–397.

3. Hsu J, Jameson A. An implicit–explicit hybrid scheme for calculating complex unsteady flows. AIAA Paper
2002-0714, 2002.

4. Bijl H, Carpenter MH. Iterative solution techniques for unsteady flow computation using higher order time
integration techniques. International Journal for Numerical Methods in Fluids 2005; 47:857–862.

5. Wigton LB, Yu NJ, Young DP. GMRES acceleration of computational fluid dynamics codes. AIAA Paper
A85-40933, 1985.

6. Mavriplis DJ. An assessment of linear versus nonlinear multigrid methods for unstructured mesh solvers. Journal
of Computational Physics 2002; 175:301–325.

7. Qin N, Ludlow DK, Shaw ST. A matrix-free preconditioned Newton/GMRES method for unsteady Navier–Stokes
solutions. International Journal for Numerical Methods in Fluids 2000; 33:223–248.

8. Jameson A. Aerodynamics. In Encyclopedia of Computational Mechanics, Fluids, Stein E, de Borst R, Hughes
TJ (eds), vol. 3. Wiley: New York, 2004; 325–406.

9. Saad Y. A flexible inner–outer preconditioned GMRES algorithm. SIAM Journal on Scientific Computing 1993;
14:461–469.

10. Van der Vorst HA, Vuik C. GMRESR: a family of nested GMRES methods. Numerical Linear Algebra with
Applications 1994; 1(4):369–386.

Copyright q 2009 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2010; 62:565–573
DOI: 10.1002/fld


